Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.524
Filtrar
1.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607033

RESUMO

Research into the neonatal Fc receptor (FcRn) has increased dramatically ever since Simister and Mostov first purified a rat version of the receptor. Over the years, FcRn has been shown to function not only as a receptor that transfers immunity from mother to fetus but also performs an array of different functions that include transport and recycling of immunoglobulins and albumin in the adult. Due to its important cellular roles, several clinical trials have been designed to either inhibit/enhance FcRn function or develop of non-invasive therapeutic delivery system such as fusion of drugs to IgG Fc or albumin to enhance delivery inside the cells. Here, we report the accidental identification of several FcRn alternatively spliced variants in both mouse and human cells. The four new mouse splice variants are capable of binding immunoglobulins' Fc and Fab portions. In addition, we have identified FcRn-specific vesicles in which immunoglobulins and albumin can be stored and that are involved in the endosomal-lysosomal system. The complexity of FcRn functions offers significant potential to design and develop novel and targeted therapeutics.


Assuntos
Receptores Fc , Animais , Humanos , Camundongos , Ratos , Albuminas/metabolismo , Endossomos/metabolismo , Imunoglobulina G/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Isoformas de Proteínas
2.
Methods Mol Biol ; 2754: 387-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512678

RESUMO

A region-specific catheter-based intranasal administration method was successfully developed, established, and validated as reported previously. By using this method, drugs can be applicated specifically to the olfactory region. Thereby, intranasally administered drugs could be delivered via neuronal connections to the central nervous system. Here, we present a detailed protocol with a step-by-step procedure for nose-to-brain delivery via the olfactory mucosa.Fc receptors such as the neonatal Fc receptor (FcRn) and potentially Fcγ receptor IIb (FcγRIIb) are involved in the uptake and transport of antibodies via the olfactory nasal mucosa. To better characterize their expression levels and their role in CNS drug delivery via the nose, an in situ hybridization (ISH) protocol was adapted for nasal mucosa samples and described in abundant details.


Assuntos
Encéfalo , Mucosa Nasal , Camundongos , Animais , Administração Intranasal , Encéfalo/metabolismo , Preparações Farmacêuticas/metabolismo , Anticorpos/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Hibridização In Situ , Sistemas de Liberação de Medicamentos/métodos
3.
J Immunol ; 212(8): 1334-1344, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38391367

RESUMO

Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.


Assuntos
Trypanosoma brucei brucei , Animais , Humanos , Receptores Fc/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Transporte/metabolismo , Imunoglobulina G/metabolismo , Fagocitose , Ativação do Complemento
4.
PLoS One ; 19(2): e0293548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359047

RESUMO

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.


Assuntos
Proteínas Tirosina Quinases , Domínios de Homologia de src , Humanos , Proteínas Tirosina Quinases/metabolismo , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinase Syk/metabolismo , Fosforilação , Receptores Fc/metabolismo , Precursores Enzimáticos/metabolismo
5.
Front Immunol ; 15: 1345422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384451

RESUMO

Introduction: Granulocytes are innate immune cells that play a key role in pathogen elimination. Recent studies revealed the diversity of granulocytes in terms of phenotype and function. In particular, a subset of granulocytes identified as low-density granulocytes (LDG) has been described in physiological conditions and with increased frequencies in several pathological contexts. However, the properties of LDG are still controversial as they vary according to the pathophysiological environment. Here we investigated the heterogeneity of granulocyte populations and the potential differences in phenotype and immunomodulatory capacity between LDG and normal density granulocytes (NDG) in people living with HIV-1 (PLWH). Methods: To this end, we developed an optimized method to purify LDG and NDG from a single blood sample, and performed in-depth, comparative phenotypic characterization of both granulocyte subtypes. We also assessed the impact of purification steps on the expression of cell surface markers on LDG by immunophenotyping them at different stages of isolation. Results: We identified 9 cell surface markers (CD16, CD32, CD89, CD62L, CD177, CD31, CD10, CXCR4 and CD172α) differentially expressed between LDG and NDG. Noteworthy, markers that distinguish the two subsets include receptors for the Fc part of IgG (CD16, CD32) and IgA (CD89). Importantly, we also highlighted that the purification procedure affects the expression of several cell surface markers (i.e.CD63, CD66b, …) which must be taken into account when characterizing LDG. Our work sheds new light on the properties of LDG in PLWH and provides an extensive characterization of this granulocyte subset in which Fc receptors are key discriminatory markers.


Assuntos
HIV-1 , Receptores Fc , Humanos , Receptores Fc/metabolismo , Granulócitos , Biomarcadores/metabolismo , Fenótipo
6.
Talanta ; 272: 125781, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359719

RESUMO

Designing modified therapeutic antibodies with enhanced FcRn-binding affinity holds promise in the extension of circulation half-lives and potential refinement of pharmacokinetics. During the development of these new-generation therapeutic antibodies, FcRn binding affinity of IgGs is emphasized and monitored as a critical quality attribute (CQA), alongside other critical assessments including titer and aggregation level. However, the traditional workflow for assessing the overall quality of expressed IgGs in harvested cell culture fluid (HCCF) is blamed to be cumbersome and time-consuming. This study presents an integrated methodology for the rapid quality assessment of IgGs in HCCF by selectively extracting IgGs with favorable high FcRn affinity for subsequent analysis using size exclusion chromatography (SEC). The approach utilizes innovative adsorbents known as FcRn immobilized hydrophilic magnetic graphene (MG@PDA@PAMAM-FcRn) in a magnetic solid-phase extraction (MSPE) process. To simulate the in vivo binding dynamics, MSPE binding and dissociation was performed at pH 6.0 and 7.4, respectively. The composite have demonstrated enhanced extraction efficiency and impurity removal ability in comparison to commercially available magnetic beads. The SEC monomer peak area value provides the output of this method, the ranking of which enabled the facile identification of superior HCCF samples with high overall quality of IgG. Optimization of MSPE parameters was performed, and the method was validated for specificity, precision, sensitivity, and accuracy. The proposed method exhibited an analytical time of 0.6 h, which is 7-22 times shortened in comparison to the conventional workflow.


Assuntos
Grafite , Receptores Fc , Receptores Fc/química , Receptores Fc/metabolismo , Imunoglobulina G/química , Meia-Vida , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Técnicas de Cultura de Células , Fenômenos Magnéticos
7.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417916

RESUMO

BACKGROUND: The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS: Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS: Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS: Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Humanos , Feminino , Molécula 1 de Adesão Intercelular , Receptores de Antígenos Quiméricos/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Regulação para Baixo , Evasão Tumoral , Linhagem Celular Tumoral , Células Matadoras Naturais , Trastuzumab/farmacologia , Anticorpos , Receptores Fc/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo
8.
Signal Transduct Target Ther ; 9(1): 16, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212320

RESUMO

Multiple myeloma (MM) remains a challenging hematologic malignancy despite advancements in chimeric antigen receptor T-cell (CAR-T) therapy. Current targets of CAR-T cells used in MM immunotherapy have limitations, with a subset of patients experiencing antigen loss resulting in relapse. Therefore, novel targets for enhancing CAR-T cell therapy in MM remain needed. Fc receptor-like 5 (FCRL5) is a protein marker with considerably upregulated expression in MM and has emerged as a promising target for CAR-T cell therapeutic interventions, offering an alternative treatment for MM. To further explore this option, we designed FCRL5-directed CAR-T cells and assessed their cytotoxicity in vitro using a co-culture system and in vivo using MM cell-derived xenograft models, specifically focusing on MM with gain of chromosome 1q21. Given the challenges in CAR-T therapies arising from limited T cell persistence, our approach incorporates interleukin-15 (IL-15), which enhances the functionality of central memory T (TCM) cells, into the design of FCRL5-directed CAR-T cells, to improve cytotoxicity and reduce T-cell dysfunction, thereby promoting greater CAR-T cell survival and efficacy. Both in vitro and xenograft models displayed that FCRL5 CAR-T cells incorporating IL-15 exhibited potent antitumor efficacy, effectively inhibiting the proliferation of MM cells and leading to remarkable tumor suppression. Our results highlight the capacity of FCRL5-specific CAR-T cells with the integration of IL-15 to improve the therapeutic potency, suggesting a potential novel immunotherapeutic strategy for MM treatment.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/genética , Interleucina-15/genética , Interleucina-15/metabolismo , Linhagem Celular Tumoral , Linfócitos T , Receptores Fc/metabolismo
9.
APMIS ; 132(4): 277-288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232051

RESUMO

IgMs are the first antibodies produced by the immune system upon encounter of a possible pathogen and are one of five antibody subclasses in humans. For IgG, the most intensively studied antibody class, the N-linked glycosylation site located in the Fc-domain is directly involved in high affinity binding to the respective receptors and initiation of corresponding immune response. IgM molecules have five N-glycosylation sites and one N-glycosylation site in the J-chain, which can be incorporated in IgM or IgA molecules. There is only limited knowledge available concerning the function of these N-glycosylations in IgMs. To address this question, we produced IgM molecules lacking a particular N-glycosylation site and tested these variants as well as IgA molecules for binding to the known receptors: the polymeric immunoglobulin receptor (pIgR), the dual receptor for IgA and IgM, FcαµR, and the specific receptor for IgM, FcµR. The single glycosylation sites did not show an impact on expression and multimerization, except for variant N402Q, which could not be expressed. In SPR measurements, no major impact on the binding to the receptors by particular glycosylation sites could be detected. In cellular assays, deglycosylated variants showed some alterations in induction of CDC activity. Most strikingly, we observed also binding of IgA to the FcµR in the same affinity range as IgM, suggesting that this might have a physiological role. To further substantiate the binding of IgA to FcµR we used IgA from different origins and were able to confirm binding of IgA preparations to the FcµR.


Assuntos
Receptores de Imunoglobulina Polimérica , Humanos , Estados Unidos , Receptores Fc/metabolismo , Imunoglobulina M/metabolismo , Imunoglobulina A , Centers for Disease Control and Prevention, U.S.
10.
Cytotherapy ; 26(3): 252-260, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127030

RESUMO

BACKGROUND AIMS: Natural killer (NK) cell transfer is a promising cellular immunotherapy for cancer. Previously, we developed a robust method to generate large NK cell numbers from CD34+ hematopoietic stem and progenitor cells (HSPCs), which exhibit strong anti-tumor activity. However, since these cells express low levels of the Fc receptor CD16a in vitro, antibody-dependent cellular cytotoxicity (ADCC) by these cells is limited. To broaden clinical applicability of our HSPC-NK cells toward less NK-sensitive malignancies, we aimed to improve ADCC through CD16a transduction. METHODS: Using wildtype and S197P mutant greater-affinity (both with V158) CD16a retroviral transgenes (i.e., a cleavable and noncleavable CD16a upon stimulation), we generated CD16a HSPC-transduced NK cells, with CD34+ cells isolated from umbilical cord blood (UCB) or peripheral blood after G-CSF stem cell mobilization (MPB). CD16a expressing NK cells were enriched using flow cytometry-based cell sorting. Subsequently, phenotypic analyses and functional assays were performed to investigate natural cytotoxicity and ADCC activity. RESULTS: Mean transduction efficiency was 34% for UCB-derived HSPCs and 20% for MPB-derived HSPCs, which was enriched by flow cytometry-based cell sorting to >90% for both conditions. Expression of the transgene remained stable during the entire NK expansion cell generation process. Proliferation and differentiation of HSPCs were not hampered by the transduction process, resulting in effectively differentiated CD56+ NK cells after 5 weeks. Activation of the HSPC-derived NK cells resulted in significant shedding of wildtype CD16a transcribed from the endogenous gene, but not of the noncleavable mutant CD16a protein expressed from the transduced construct. The mean increase of CD107+IFNγ+ expressing NK cells after inducing ADCC was tenfold in enriched noncleavable CD16a HSPC-NK cells. Killing capacity of CD16a-transduced NK cells was significantly improved after addition of a tumor-targeting antibody in tumor cell lines and primary B-cell leukemia and lymphoma cells compared to unmodified HSPC-NK cells. CONCLUSIONS: Together, these data demonstrate that the applicability of adoptive NK cell immunotherapy may be broadened to less NK-sensitive malignancies by upregulation of CD16a expression in combination with the use of tumor-targeting monoclonal antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Receptores Fc/metabolismo , Humanos
11.
mBio ; 15(1): e0303623, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112418

RESUMO

Antibodies represent the primary correlate of immunity following most clinically approved vaccines. However, their mechanisms of action vary from pathogen to pathogen, ranging from neutralization, to opsonophagocytosis, to cytotoxicity. Antibody functions are regulated both by antigen specificity (Fab domain) and by the interaction of their Fc domain with distinct types of Fc receptors (FcRs) present in immune cells. Increasing evidence highlights the critical nature of Fc:FcR interactions in controlling pathogen spread and limiting the disease state. Moreover, variation in Fc-receptor engagement during the course of infection has been demonstrated across a range of pathogens, and this can be further influenced by prior exposure(s)/immunizations, age, pregnancy, and underlying health conditions. Fc:FcR functional variation occurs at the level of antibody isotype and subclass selection as well as post-translational modification of antibodies that shape Fc:FcR-interactions. These factors collectively support a model whereby the immune system actively harnesses and directs Fc:FcR interactions to fight disease. By defining the precise humoral mechanisms that control infections, as well as understanding how these functions can be actively tuned, it may be possible to open new paths for improving existing or novel vaccines.


Assuntos
Anticorpos , Receptores Fc , Receptores Fc/metabolismo , Imunidade , Isotipos de Imunoglobulinas , Processamento de Proteína Pós-Traducional
12.
Front Immunol ; 14: 1260377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124734

RESUMO

Rhesus macaques (RMs) are a common pre-clinical model used to test HIV vaccine efficacy and passive immunization strategies. Yet, it remains unclear to what extent the Fc-Fc receptor (FcR) interactions impacting antiviral activities of antibodies in RMs recapitulate those in humans. Here, we evaluated the FcR-related functionality of natural killer cells (NKs) from peripheral blood of uninfected humans and RMs to identify intra- and inter-species variation. NKs were screened for FcγRIIIa (human) and FcγRIII (RM) genotypes (FcγRIII(a)), receptor signaling, and antibody-dependent cellular cytotoxicity (ADCC), the latter mediated by a cocktail of monoclonal IgG1 antibodies with human or RM Fc. FcγRIII(a) genetic polymorphisms alone did not explain differences in NK effector functionality in either species cohort. Using the same parameters, hierarchical clustering separated each species into two clusters. Importantly, in principal components analyses, ADCC magnitude, NK contribution to ADCC, FcγRIII(a) cell-surface expression, and frequency of phosphorylated CD3ζ NK cells all contributed similarly to the first principal component within each species, demonstrating the importance of measuring multiple facets of NK cell function. Although ADCC potency was similar between species, we detected significant differences in frequencies of NK cells and pCD3ζ+ cells, level of cell-surface FcγRIII(a) expression, and NK-mediated ADCC (P<0.001), indicating that a combination of Fc-FcR parameters contribute to overall inter-species functional differences. These data strongly support the importance of multi-parameter analyses of Fc-FcR NK-mediated functions when evaluating efficacy of passive and active immunizations in pre- and clinical trials and identifying correlates of protection. The results also suggest that pre-screening animals for multiple FcR-mediated NK function would ensure even distribution of animals among treatment groups in future preclinical trials.


Assuntos
Anticorpos Monoclonais , Receptores Fc , Animais , Humanos , Receptores Fc/metabolismo , Macaca mulatta , Células Matadoras Naturais , Análise Multivariada , Análise por Conglomerados
13.
Drug Metab Pharmacokinet ; 53: 100506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38029470

RESUMO

We previously reported that monoclonal antibodies (mAbs) with a high isoelectric point (pI) value tended to exhibit fast plasma clearance (CL) and large steady-state volume of distribution (Vdss) in mice. However, the positive correlation between pI, CL, and Vdss cannot be described by the reported physiologically based pharmacokinetic (PBPK) models, in which FcRn-mediated transcytosis of mAbs is set to be minimal compared to convection-mediated transport. To address this issue, physiological parameters (lymph flow rate, reflection coefficient, endothelial uptake clearance, and FcRn concentration) were optimized based on the pharmacokinetic profiles of mAbs with various pI values in wild type and FcRn-deficient (beta-2-microglobulin knockout [KO]) mice. Simulations using the PBPK model developed in this study showed a positive correlation between pI, CL and Vdss observed in wild-type mice. Therefore, this model successfully characterized our hypothetical mechanism that an electrostatic positive interaction between mAbs and the endothelial membrane enhances FcRn-mediated transcytosis of mAbs, resulting in large Vdss. We sought to determine the right contribution of the two pathways of antibody distribution to the interstitial space and established a new model that could effectively capture the effect of pI on FcRn-mediated distribution of mAbs in the body.


Assuntos
Anticorpos Monoclonais , Modelos Biológicos , Camundongos , Animais , Anticorpos Monoclonais/farmacocinética , Transporte Biológico , Cinética , Camundongos Knockout , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo
14.
Nat Commun ; 14(1): 6726, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872175

RESUMO

Immunoglobulin (Ig) A functions as monomeric IgA in the serum and Secretory (S) IgA in mucosal secretions. Host IgA Fc receptors (FcαRs), including human FcαR1/CD89, mediate IgA effector functions; however, human pathogen Streptococcus pyogenes has evolved surface-protein virulence factors, including M4, that also engage the CD89-binding site on IgA. Despite human mucosa serving as a reservoir for pathogens, SIgA interactions with CD89 and M4 remain poorly understood. Here we report cryo-EM structures of M4-SIgA and CD89-SIgA complexes, which unexpectedly reveal different SIgA-binding stoichiometry for M4 and CD89. Structural data, supporting experiments, and modeling indicate that copies of SIgA bound to S. pyogenes M4 will adopt similar orientations on the bacterium surface and leave one host FcαR binding site open. Results suggest unappreciated functional consequences associated with SIgA binding to host and bacterial FcαRs relevant to understanding host-microbe co-evolution, IgA effector functions and improving the outcomes of group A Streptococcus infection.


Assuntos
Imunoglobulina A Secretora , Streptococcus pyogenes , Humanos , Sítios de Ligação , Interações Hospedeiro-Patógeno , Imunoglobulina A , Imunoglobulina A Secretora/química , Imunoglobulina A Secretora/metabolismo , Receptores Fc/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo
15.
Nat Cancer ; 4(12): 1675-1692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37872381

RESUMO

Despite recent advances in the treatment of acute myeloid leukemia (AML), there has been limited success in targeting surface antigens in AML, in part due to shared expression across malignant and normal cells. Here, high-density immunophenotyping of AML coupled with proteogenomics identified unique expression of a variety of antigens, including the RNA helicase U5 snRNP200, on the surface of AML cells but not on normal hematopoietic precursors and skewed Fc receptor distribution in the AML immune microenvironment. Cell membrane localization of U5 snRNP200 was linked to surface expression of the Fcγ receptor IIIA (FcγIIIA, also known as CD32A) and correlated with expression of interferon-regulated immune response genes. Anti-U5 snRNP200 antibodies engaging activating Fcγ receptors were efficacious across immunocompetent AML models and were augmented by combination with azacitidine. These data provide a roadmap of AML-associated antigens with Fc receptor distribution in AML and highlight the potential for targeting the AML cell surface using Fc-optimized therapeutics.


Assuntos
Leucemia Mieloide Aguda , Receptores de IgG , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antígenos de Superfície , Leucemia Mieloide Aguda/tratamento farmacológico , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Ribonucleoproteínas Nucleares Pequenas , Microambiente Tumoral
16.
Front Immunol ; 14: 1251127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822931

RESUMO

Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.


Assuntos
Linfoma , Neoplasias , Animais , Camundongos , Humanos , Neoplasias/metabolismo , Linfócitos B/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de Superfície Celular/metabolismo , Linfoma/metabolismo , Proteínas de Membrana/metabolismo
17.
Sci Transl Med ; 15(712): eadf6598, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37672567

RESUMO

Beyond the acute illness caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) infection, about one-fifth of infections result in long-term persistence of symptoms despite the apparent clearance of infection. Insights into the mechanisms that underlie postacute sequelae of COVID-19 (PASC) will be critical for the prevention and clinical management of long-term complications of COVID-19. Several hypotheses have been proposed that may account for the development of PASC, including persistence of virus and dysregulation of immune responses. Among the immunological changes noted in PASC, alterations in humoral immunity have been observed in some patient subsets. To begin to determine whether SARS-CoV-2- or other pathogen-specific humoral immune responses evolve uniquely in PASC, we performed comprehensive antibody profiling against SARS-CoV-2, a panel of endemic pathogens, and a panel of routine vaccine antigens using systems serology in two cohorts of patients with preexisting systemic autoimmune rheumatic disease (SARD) who either developed or did not develop PASC. A distinct qualitative shift observed in Fcγ receptor (FcγR) binding was observed in individuals with PASC. Specifically, individuals with PASC harbored weaker FcγR-binding anti-SARS-CoV-2 antibodies and stronger FcγR-binding antibody responses against the endemic coronavirus OC43. Individuals with PASC developed an OC43 S2-specific antibody response with stronger FcγR binding, linked to cross-reactivity across SARS-CoV-2 and common coronaviruses. These findings identify previous coronavirus imprinting as a potential marker for the development of PASC in individuals with SARDs.


Assuntos
Imunidade Humoral , Síndrome Pós-COVID-19 Aguda , Doenças Reumáticas , SARS-CoV-2 , Doenças Reumáticas/complicações , Doenças Reumáticas/imunologia , SARS-CoV-2/imunologia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Síndrome Pós-COVID-19 Aguda/complicações , Síndrome Pós-COVID-19 Aguda/imunologia , Doenças Endêmicas , Receptores Fc/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
18.
Cell Rep ; 42(7): 112734, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421619

RESUMO

Immunoglobulin G (IgG) antibodies coordinate immune effector responses by interacting with effector cells via fragment crystallizable γ (Fcγ) receptors. The IgG Fc domain directs effector responses through subclass and glycosylation variation. Although each Fc variant has been extensively characterized in isolation, during immune responses, IgG is almost always produced in Fc mixtures. How this influences effector responses has not been examined. Here, we measure Fcγ receptor binding to mixed Fc immune complexes. Binding of these mixtures falls along a continuum between pure cases and quantitatively matches a mechanistic model, except for several low-affinity interactions mostly involving IgG2. We find that the binding model provides refined estimates of their affinities. Finally, we demonstrate that the model predicts effector cell-elicited platelet depletion in humanized mice. Contrary to previous views, IgG2 exhibits appreciable binding through avidity, though it is insufficient to induce effector responses. Overall, this work demonstrates a quantitative framework for modeling mixed IgG Fc-effector cell regulation.


Assuntos
Complexo Antígeno-Anticorpo , Receptores de IgG , Animais , Camundongos , Receptores de IgG/metabolismo , Complexo Antígeno-Anticorpo/metabolismo , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas/química , Glicosilação , Receptores Fc/metabolismo
19.
J Control Release ; 358: 465-475, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169177

RESUMO

The concept of grafting mannose 6-phosphonate derivatives (M6Pn), named AMFA, on therapeutic proteins was first developed for the improvement of enzyme delivery in lysosomal storage disorders. This glycoengineering increases the cellular uptake of the protein via the cation-independent mannose 6-phosphate receptor (M6PR) which further allows their targeting to the lysosomes. In the present study, we investigated the extent to which the direct grafting of AMFA onto a drug, here a monoclonal antibody (mAb), affects the cell uptake and recycling of the antibody. The antibodies infliximab (IFX) and adalimumab (ADA), directed against the tumor necrosis factor α (TNFα), grafted with AMFA acquired an affinity for the M6PR, resulting in a >3-fold increase in drug release in cells. Subsequently, the impact of AMFA grafting to the Fc portion of mAb on its affinity for the neonatal Fc receptor (FcRn), which is the key receptor for antibody recycling, was evaluated. Whether one to three AMFA moieties were grafted, FcRn-mediated recycling of mAb was not affected. AMFA grafting did not impair the pharmacokinetics of both ADA and IFX and presented a high stability since AMFA were still bound to mAb in the plasma of mice 21 days after the treatment. In conclusion, this type of antibody engineering with a reduced number of AMFA confers M6PR targeting property and increases endocytosis, and yet appears fully compatible with FcRn binding and with antibody recycling and transcytosis.


Assuntos
Manose , Receptores Fc , Camundongos , Animais , Receptores Fc/metabolismo , Anticorpos Monoclonais/farmacocinética , Fator de Necrose Tumoral alfa , Antígenos de Histocompatibilidade Classe I/metabolismo , Fosfatos
20.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...